The discovery

The Gaussian-School of Higher-Arithmetic (1831, updated 2022); tutorial #3.

Introducing Advanced Natural (rotational) Number theory.

Every primitive logical human (infant) knew very well that we cannot take away one (real thing) from nothing. But we beat it into them and they gave in and accepted the number minus-one. Then every adult knew very well that there was no such number as the square-root of minus-one, but they gave in and just went along with the absurdity of it all. Well, the primitives or infants were right all along, there is no such number as minus-one where that is taken to mean the impossible "take away one from nothing". What really does exist however is the number-one times a rotation of two quadrants of polarity-rotation into inverse-one and the square-root of that is so obvious that even our colleagues in the neo-Pythagorean School of "flat-earth-arithmetic" might eventually be able to grasp it. 
Click on the above sketch to proceed with the arithmetic required for Quantum-Relativity.
Author's Notes:

It is worth pointing out here that the engineer Hero of Alexandria showed the existence of the square-root of inverse-one fully 200 years before the absurd mathematician Diophantus of Alexandria ever introduced the "clever" little Chinese dodge of ignoring the fact that zero minus one is strictly speaking a mathematically invalid operation. For the last 1800 years, our so-called "mathematicians" have been indoctrinating young mathematicians and everybody else into their doctrine of nonsense. Hero must have been turning in his grave in sheer embarrassment that he ever even got involved in trying to help such a pompous shower of human-hubris filled buffoons in the first place.
Share by: